Intra-unit-cell nematic charge order in the titanium-oxypnictide family of superconductors.

نویسندگان

  • Benjamin A Frandsen
  • Emil S Bozin
  • Hefei Hu
  • Yimei Zhu
  • Yasumasa Nozaki
  • Hiroshi Kageyama
  • Yasutomo J Uemura
  • Wei-Guo Yin
  • Simon J L Billinge
چکیده

Understanding the role played by broken-symmetry states such as charge, spin and orbital orders in the mechanism of emergent properties, such as high-temperature superconductivity, is a major current topic in materials research. That the order may be within one unit cell, such as nematic, was only recently considered theoretically, but its observation in the iron-pnictide and doped cuprate superconductors places it at the forefront of current research. Here, we show that the recently discovered BaTi2Sb2O superconductor and its parent compound BaTi2As2O form a symmetry-breaking nematic ground state that can be naturally explained as an intra-unit-cell nematic charge order with d-wave symmetry, pointing to the ubiquity of the phenomenon. These findings, together with the key structural features in these materials being intermediate between the cuprate and iron-pnictide high-temperature superconducting materials, render the titanium oxypnictides an important new material system to understand the nature of nematic order and its relationship to superconductivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Work supported in part by US Department of Energy contract DE-AC02-76SF00515. Theory of Electron Nematic Order in LaOFeAs

We study a spin S quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large S and large N methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature symmetric phase to a narrow region of intermediate “nematic” phase, and then to a low temperature spin ordered phase. Identifying phases by their broken sy...

متن کامل

Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi2Sb2O

Spin-driven nematicity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism...

متن کامل

Theory of electron nematic order in LaFeAsO

We study a spin S quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large S and large N methods, we show that this model exhibits a sequence of two phase transitions: from a high-temperature symmetric phase to a narrow region of intermediate “nematic” phase, and then to a low-temperature spin ordered phase. Identifying phases by their broken sy...

متن کامل

In-situ growth of superconducting SmO1−xFxFeAs thin films by pulsed laser deposition

Oxypnictide thin film growth by pulsed laser deposition (PLD) is one of many insufficiently resolved issues in the research of iron-based superconductors. Here we report on the successful realization of superconducting SmO1-xFxFeAs oxypnictide thin film growth by in-situ PLD on CaF2 (fluorite) substrates. CaF2 acts as fluorine supplier by diffusion and thus enables superconducting oxypnictide t...

متن کامل

New Fe-based superconductors: properties relevant for applications

Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O, F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length and unconventional pairing. On the other ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014